学进去-教育应平等而普惠
排序:
限于篇幅仅展示1000道试题,请根据关键词精准搜索
如图所示,位于竖直平面内的平面直角坐标系xOy的第一象限虚线上方(包含虚线)存在竖直向下的匀强电场(如图甲),电场强度大小为E;第三象限某个区域(未画出)存在垂直于纸面向里的匀强磁场,磁感应强度大小为B。现有大量质量为m、电荷量为+q的粒子以相同的初速度水平射入电场,均经过O点进入磁场,最后离开磁场进入第四象限,粒子在第三象限运动均在磁场中,忽略粒子的重力及相互间的作用。
(1)匀强电场的边界方程(粒子入射点的坐标yx间的关系);
(2)粒子进入电场的位置记为Pxy)其中,若,求磁场区域的最小面积;
(3)在(2)问的基础上,若在的空间内加一沿x轴方向的大小未知的匀强磁场B1(如图乙),则从P()进入电场的粒子,在B1磁场中运动轨迹最高点的y坐标恰好为0,求轨迹最高点对应的x坐标的可能取值。
类型:解答题
难度系数:困难0.15
收藏
纠错
详情
如图所示,左侧倾斜部分为光滑的相互平行放置的间距为L,电阻不计的金属导轨,水平部分为用绝缘材料做成的间距也为L的光滑轨道,两者之间平滑连接。倾斜导轨的倾角为θ,倾斜导轨上端接有一个单刀双掷开关S,接在1端的电源,电动势为E,内阻为r,其串联的定值电阻为R1,接在2端的电容器的电容为C(未充电)。在水平轨道正方形区域Ⅰ、Ⅱ分布有大小相等方向相反的匀强磁场(大小未知),在倾斜导轨区域Ⅲ中存在方向竖直向上且大小与Ⅰ、Ⅱ区相同的匀强磁场,当先将开关S与1相连时,一质量为m电阻不计的金属导体棒ef恰好能静止在高为h的倾斜导轨上。然后再将开关S掷向2,此后导体棒ef将由静止开始下滑,并且无能量损失地进入水平轨道,之后与原来静止在水平轨道上的“U”型导线框abcd碰撞,并粘合为一个正方形线框,U型导线框三条边总质量为3m、总电阻为4R,当线框完全穿过Ⅰ区磁场后,恰好静止线框四边与Ⅱ磁场边界线重合。不计一切摩擦阻力,(本题中ErR1CRLhθm及重力加速度g均为已知),求:
(1)磁感应强度B的大小;
(2)将开关S掷向2后,ef棒滑到GH处的速度v;(本问中磁感应强度可用B表示);
(3)线框穿越磁场边界线MNPQ过程中产生的热量之比
类型:解答题
难度系数:困难0.15
收藏
纠错
详情
如图,在平面直角坐标系中,矩形区域放置在第二象限,对角线OB以上的区域有方向平行于OC向下的匀强电场,AB边长为LBC边长为2LP点为对角线OB的中点,一质量为m、电荷量为的带电粒子以某一初速度从D点出发经P点进入电场,从C点以水平向右、大小为v的速度进入第一象限内的静电分析器,分析器中存在电场线沿半径方向指向圆心O的均匀辐向电场,粒子恰好在分析器内做匀速圆周运动,运动轨迹处的场强大小为(未知)。不计粒子所受重力,忽略金属板的边缘效应。求:
(1)粒子在静电分析器轨迹处的场强大小
(2)粒子从D点出发时与水平方向的夹角
(3)匀强电场的电场强度大小E
(4)整个运动过程的总时间t
类型:解答题
难度系数:困难0.15
收藏
纠错
详情
对于项数为的有穷数列,若,则称为“数列”.
(1)已知数列的通项公式分别为.分别判断是否为“数列”;(只需给出判断)
(2)已知“数列”的各项互不相同,且.若也是“数列”,求有穷数列的通项公式;
(3)已知“数列”的一个排列(即数列中的项不计先后顺序,分别取),且,求的所有可能值.
类型:解答题
难度系数:困难0.15
收藏
纠错
详情
已知有穷数列中的每一项都是不大于的正整数.对于满足的整数,令集合.记集合中元素的个数为(约定空集的元素个数为0).
(1)若,求
(2)若,求证:互不相同;
(3)已知,若对任意的正整数都有,求的值.
类型:解答题
难度系数:困难0.15
收藏
纠错
详情
阅读下面材料,根据其内容和所给段落开头语续写两段,使之构成一篇完整的短文。

Kuppan was a good badminton player. His rise within the ranks of the badminton players of the school was impressive but unusual. One day he was nothing, the next he was a member of the school team.

In the School Championships, he sprang a surprise by knocking out the top seed, Richard Lee, in the semi final. In the final, he easily beat another competitor Abdul Rauf by 15-3 and 15-10. He was the School Champion. It was unbelievable. The previous year he did not even get past the first round, This year he was the champion.

Success got into his head, He began to think he was really good, In fact, he arrogantly (傲慢地) told Richard Lee and the others that they would never beat him again. He claimed he was simply too good for them, in a league of his own.

Well, it was true that Kuppan was a good and skillful player. He had natural ability and talent. So he picked up the game very quickly and soon became the best. However. he did not realize that nobody can remain at the top all the time. What goes up must certainly come down. Kuppan thought he could stay up indefinitely.

The other players were annoyed by Kuppan’ s declaration. They resolved to train harder to beat the guy who had insulted (羞辱) them, They even trained on their own every day while Kuppan wandered around talking with pride about his success. The State Individual Championships were coming up,So was the Interschool Tournament. The school’s coach worked hard to improve the school players. All of them trained hard, except Kuppan. He would miss training or perform half- heartedly. He was more interested in entertaining the admirers that had gathered around him. He thought he was too strong to be defeated.


注意:1.续写词数应为150个左右;
2.请按如下格式在答题卡的相应位置作答。

The State Individual Championships reached us in time.


______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Kuppan tried to make a difference in the second round,


______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
类型:读后续写
难度系数:困难0.15
收藏
纠错
详情
已知空间向量列,如果对于任意的正整数,均有,则称此空间向量列为“等差向量列”,称为“公差向量”;空间向量列,如果且对于任意的正整数,均有,则称此空间向量列为“等比向量列”,常数称为“公比”.
(1)若是“等比向量列”,为单位向量,求(用表示);
(2)若是“等差向量列”,“公差向量”是“等比向量列”,“公比”.求
(3)若是“等差向量列”,,记,等式对于和2均成立,且,求的最大值.
类型:解答题
难度系数:困难0.15
收藏
纠错
详情
已知抛物线的焦点为,准线交轴于点,过点作倾斜角为为锐角)的直线交抛物线于两点(其中点A在第一象限).如图,把平面沿轴折起,使平面平面,则以下选项正确的为(       
      
A.折叠前的面积的最大值为
B.折叠前平分
C.折叠后三棱锥体积为定值
D.折叠后异面直线所成角随的增大而增大
类型:多选题
难度系数:困难0.15
收藏
纠错
详情
已知函数恰有两个零点和一个极大值点,且成等比数列,则__________;若的解集为,则的极大值为__________
类型:双空题
难度系数:困难0.15
收藏
纠错
详情
已知直线与椭圆交于两点,点为椭圆的下焦点,则下列结论正确的是(       
A.当时,,使得
B.当时,
C.当时,,使得
D.当时,
类型:多选题
难度系数:困难0.15
收藏
纠错
详情
首页
上一页
下一页
尾页