学进去-教育应平等而普惠
排序:
限于篇幅仅展示1000道试题,请根据关键词精准搜索
定义:如果函数的图像上分别存在点MN关于x轴对称,则称函数具有C关系.
(1)判断函数是否具有C关系;
(2)若函数不具有C关系,求实数a的取值范围;
(3)若函数在区间上具有C关系,求实数m的取值范围.
类型:解答题
难度系数:困难0.15
收藏
纠错
详情
已知函数为自然对数的底数).
(1)若函数在点处的切线的斜率为,求实数的值;
(2)当时,讨论函数的单调性;
(3)若关于的不等式在区间上恒成立,求实数的取值范围.
类型:解答题
难度系数:困难0.15
收藏
纠错
详情
在平面直角坐标系中,定义为两点的“切比雪夫距离”,又设点上任意一点,称的最小值为点到直线的“切比雪夫距离”,记作,给出下列四个命题,正确的是(       
A.对任意三点,都有
B.已知点和直线,则
C.到定点的距离和到的“切比雪夫距离”相等的点的轨迹是正方形.
D.定点,动点满足,则点的轨迹与直线为常数)有且仅有2个公共点.
类型:多选题
难度系数:困难0.15
收藏
纠错
详情
如图,在平面直角坐标系xOy中,已知椭圆C1(ab>0)的离心率e,左顶点为A(﹣4,0),过点A作斜率为kk≠0)的直线l交椭圆C于点D,交y轴于点E

(1)求椭圆C的方程;
(2)已知PAD的中点,是否存在定点Q,对于任意的kk≠0)都有OPEQ,若存在,求出点Q的坐标;若不存在说明理由;
(3)若过O点作直线l的平行线交椭圆C于点M,求的最小值.
类型:解答题
难度系数:困难0.15
收藏
纠错
详情
高斯是德国著名的数学家,近代数学奠基之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为七界三大数学家,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,如:又称为取整函数,在现实生活中有着广泛的应用,诸如停车收费,出租车收费等均按“取整函数”进行计费,以下关于“取整函数”的描述,正确的是(       
A.
B.
C.,若,则有
D.方程的解集为
类型:多选题
难度系数:困难0.15
收藏
纠错
详情
已知椭圆经过点,过原点的直线与椭圆交于两点,点在椭圆上(异于),且
(1)求椭圆的标准方程;
(2)若点为直线上的动点,过点作椭圆的两条切线,切点分别为,求的最大值.
类型:解答题
难度系数:困难0.15
收藏
纠错
详情
三个互不相同的函数在区间上恒有或恒有,则称在区间上的“分割函数”.
(1)设,试分别判断是否是在区间上的“分割函数”,请说明理由;
(2)求所有的二次函数(用表示,使得该函数是在区间上的“分割函数”;
(3)若,且存在实数,使得在区间上的“分割函数”,求的最大值.
类型:解答题
难度系数:困难0.15
收藏
纠错
详情
已知定义域为的函数.当时,若)是增函数,则称是一个“函数”.
(1)判断函数)是否为函数,并说明理由;
(2)若定义域为函数满足,解关于的不等式
(3)设是满足下列条件的定义域为的函数组成的集合:①对任意都是函数;②. 若对一切和所有成立,求实数的最大值.
类型:解答题
难度系数:困难0.15
收藏
纠错
详情
已知函数时有最大值和最小值,设.
(1)求实数的值;
(2)若不等式上恒成立,求实数的取值范围;
(3)若关于的方程有三个不同的实数解,求实数的取值范围.
类型:解答题
难度系数:困难0.15
收藏
纠错
详情
已知
(1)若当时函数取到极值,求的值;
(2)讨论函数在区间上的零点个数.
类型:问答题
难度系数:困难0.15
收藏
纠错
详情
首页
上一页
下一页
尾页