学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.15
所属科目:小学数学
四名棋手每两名选手都要比赛一局,规则规定胜一局得2分,平一局得1分,负一局得0分,比赛结果,没有人全胜,并且各人的得分都不相同。那么最多有多少局平局?

(1)因为每两名棋手要赛一场,每位棋手一共要赛3场,总分最多是多少分?
(2)因为没有人全胜,也就意味着没有人全输,那么各人的得分情况为什么不可能是5,4,3,2?请用计算进行说明。
(3)四名棋手的得分可能各是多少分?
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交