①着眼于事物的整体性,“高屋建瓴”才能实现整体最优目标
②对未来充满信心,“百折不挠”成为实现事物的飞跃的坚实基础
③用综合的思维方式认识事物,“面面俱到”方能抓住事物的主要矛盾
④承认矛盾普遍性的前提下具体问题具体分析,“求同存异”有助矛盾解决
A.①② | B.①④ | C.②③ | D.③④ |

同类型试题

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2


y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

