学进去-教育应平等而普惠
试题
类型:操作题
难度系数:0.15
所属科目:高中信息技术
对分查找算法可用于求解方程的近似解。现要求方程x3-4x2+x+5=0的一个近似解,可设f(x)=x3-4x2+x+5,若有区间[a,b],使f(a)与f(b)异号,则该区间内必存在该方程的一个解。小吴为比编写了VB程序,功能如下:分别在本框Text1和Text2中输入求解的区间值a和b(a<b),单击“计算”按钮Command1,若该区间必有解,则求解出该区间内的一个近似解(精确到10-5)否则提示“重新输入区间”,计算后的相关结果显示在列表框List1中。程序运行界面如下图所示。

实现上述功能的VB程序如下,请在划线处填上合适的代码。
Private Sub Command1_Click()
Dim a As Double, b As Double, m As Double, x As Double
Dim ym As Double, yb As Double
a=Val(Text1.text):b=Val(Text2.Text)
If a>b Then t=a:a=b:b=t
Do While ____

m=(a+b)/2

ym=m^3—4*m^2+m+5

yb=b^3-4*b^2+b+5

If Abs(ym)<0.00001 Then Exit Do

If ___ Then

b=m

Else

a=m

End If
Loop
Text3.Text=Str(Int(m*10000)/10000)
End Sub
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交