(1)质量为m的雨滴由静止开始,下落高度h时速度为u,求这一过程中克服空气阻力所做的功W;
(2)将雨滴看作半径为r的球体,设其竖直落向地面的过程中所受空气阻力f=kr2v2,其中v是雨滴的速度,k是比例系数;
a.设雨滴的密度为ρ,推导雨滴下落趋近的最大速度vm与半径r的关系式;
b.示意图中画出了半径为r1、r2(r1>r2)的雨滴在空气中无初速下落的v—t图线,其中_____对应半径为r1的雨滴(选填①、②);若不计空气阻力,请在图中画出雨滴无初速下落的v—t图线。
(3)由于大量气体分子在各方向运动的几率相等,其对静止雨滴的作用力为零。将雨滴简化为垂直于运动方向面积为S的圆盘,证明:圆盘以速度v下落时受到的空气阻力f ∝v2(提示:设单位体积内空气分子数为n,空气分子质量为m0)。


同类型试题

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2


y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

