学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.40
所属科目:高中数学
对于函数,分别在处作函数的切线,记切线与轴的交点分别为,记为数列的第n项,则称数列为函数的“切线-轴数列”,同理记切线与轴的交点分别为,记为数列的第n项,则称数列为函数的“切线-轴数列”
(1)设函数,记“切线-轴数列”为,记的前n项和,求.
(2)设函数,记“切线-轴数列”为,猜想的通项公式并证明你的结论.
(3)设复数均为不为0的实数,记的共轭复数,设,记“切线-轴数列”为,求证:对于任意的不为0的实数,总有成立.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交