某制药公司研制了一款针对某种病毒的新疫苗.该病毒一般通过病鼠与白鼠之间的接触传染,现有只白鼠,每只白鼠在接触病鼠后被感染的概率为
,被感染的白鼠数用随机变量X表示,假设每只白鼠是否被感染之间相互独立
(1)若


(2)接种疫苗后的白鼠被病鼠感染的概率为









(i)试写出事件“”发生的概率表达式(用
表示,组合数不必计算);
(ⅱ)在统计学中,若参数时使得概率
最大,称
是
的最大似然估计.根据这一原理和团队A,B提出的函数模型,判断哪个团队的函数模型可以求出
的最大似然估计,并求出最大似然估计.参考数据:
.

同类型试题

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2


y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

