学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.15
所属科目:高中数学

已知双曲线的中心为坐标原点,其右焦点到渐近线的距离为,离心率为


(1)求双曲线的标准方程;
(2)记双曲线的左、右顶点分别为,点为双曲线的右支上异于点的动点,直线与直线相交于点,直线与双曲线的另一个交点为,直线垂直于点,问是否存在点,使得为定值?若存在,请求出点的坐标;若不存在,请说明理由,
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交