学进去-教育应平等而普惠
试题
类型:计算题
难度系数:0.40
所属科目:高中数学
已知椭圆T,其上焦点F与抛物线K的焦点重合.

(1)若过点F的直线交椭圆T于点AB,同时交抛物线K于点CD(如图1所示,点C在椭圆与抛物线第一象限交点上方),试证明:线段AC大于BD长度的大小;
(2)若过点F的直线交椭圆T于点AB,过点F与直线AB垂直的直线EG交抛物线K于点EG(如图2所示),试求四边形AEBG面积的最小值.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交