学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.40
所属科目:高中数学
设在二维平面上有两个点,它们之间的距离有一个新的定义为,这样的距离在数学上称为曼哈顿距离或绝对值距离.在初中时我们学过的两点之间的距离公式是,这样的距离称为欧几里得距离(简称欧氏距离)或直线距离.
(1)已知两个点的坐标为,如果它们之间的曼哈顿距离不大于3,那么的取值范围是多少?
(2)已知两个点的坐标为,如果它们之间的曼哈顿距离要恒大于2,那么的取值范围是多少?
(3)若点在函数图象上且,点的坐标为,求的最小值并说明理由.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交