学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.15
所属科目:高中数学
若函数的定义域为,且对于任意的,“”的充要条件是“”,则称函数上的“单值函数”.对于函数,记
,…,,其中,2,3,…,并对任意的,记集合,并规定.
(1)若,函数的定义域为,求
(2)若函数的定义域为,且存在正整数,使得对任意的,求证:函数上的“单值函数”;
(3)设,若函数的定义域为,且表达式为:
判断是否为上的“单值函数”,并证明对任意的区间,存在正整数,使得.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交