学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.15
所属科目:高中数学
已知双曲线H的左、右焦点为,左、右顶点为,椭圆E为焦点,以为长轴.
(1)求椭圆E的离心率;
(2)设椭圆Ey轴于,过的直线l交双曲线H的左、右两支于CD两点,求面积的最小值;
(3)设点满足.过M且与双曲线H的渐近线平行的两直线分别交H于点PQ.过M且与PQ平行的直线交H的渐近线于点ST.证明:为定值,并求出此定值.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交