学进去-教育应平等而普惠
试题
类型:单选题
难度系数:0.15
所属科目:高中数学
定义:若直线将多边形分为两部分,且使得多边形在两侧的顶点到直线的距离之和相等,则称为多边形的一条“等线”.已知双曲线ab为常数)和其左右焦点PC上的一动点,过PC的切线分别交两条渐近线于点AB,已知四边形与三角形有相同的“等线”.则对于下列四个结论:

②等线必过多边形的重心;
始终与相切;
的斜率为定值且与ab有关.
其中所有正确结论的编号是(       
A.①②B.①④C.②③④D.①②③
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交