学进去-教育应平等而普惠
试题
类型:证明题
难度系数:0.15
所属科目:高中数学
对于数列定义的差数列,的累次差数列.如果的差数列满足,则称是“绝对差异数列”;如果的累次差数列满足,则称是“累差不变数列”.
(1)设数列:2,4,8,10,14,16;:6,1,5,2,4,3,判断数列和数列是否为“绝对差异数列”或“累差不变数列”,直接写出你的结论;
(2)若无穷数列既是“绝对差异数列”又是“累差不变数列”,且的前两项为大于0的常数),求数列的通项公式;
(3)已知数列是“绝对差异数列”,且.证明:的充要条件是.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交