学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.15
所属科目:高中数学
某数学兴趣小组运用《几何画板》软件探究型抛物线图象.发现:如图1所示,该类型图象上任意一点M到定点的距离,始终等于它到定直线上的距离(该结论不需要证明),他们称:定点F为图象的焦点,定直线l为图象的准线,叫做抛物线的准线方程.其中原点O的中点,例如,抛物线,其焦点坐标为,准线方程为.其中.

(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l的方程;
(2)【技能训练】如图2所示,已知抛物线上一点P到准线l的距离为6,求点P的坐标;
(3)【能力提升】如图3所示,已知过抛物线的焦点F的直线依次交抛物线及准线l于点,若a的值;
(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C将一条线段分为两段,使得其中较长一段是全线段与另一段的比例中项,即满足:,后人把这个数称为“黄金分割”,把点C称为线段的黄金分割点.如图4所示,抛物线的焦点,准线ly轴交于点E为线段的黄金分割点,点My轴左侧的抛物线上一点.当时,求出的面积值.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交