学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.15
所属科目:高中数学
如图,D为圆O上一动点,过点D分别作xy轴的垂线,垂足分别为AB,连接BA并延长至点W,使得,点W的轨迹记为曲线C.

(1)求曲线C的方程;
(2)若过点的两条直线分别交曲线CMN两点,且,求证:直线MN过定点,并求出定点坐标;
(3)若曲线Cy轴正半轴于点S,直线与曲线C交于不同的两点GH,直线SHSG分别交x轴于PQ两点.请探究:y轴上是否存在点R,使得?若存在,求出点R坐标;若不存在,请说明理由.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交