
(1)如图①,将△BCD绕点B逆时针旋转120°得到△BC0D0,其中,点C、D的对应点分别是点C0、D0,延长D0C0交AB于点E.求BE的长;
(2)如图②,将(1)中的△BC0D0以每秒1个单位长度的速度沿射线BC向右平行移动,得到△B1C1D1,其中,点B、C0、D0的对应点分别是点B1、C1、D1,当点C1移动到边CD上时停止移动.设移动的时间为t秒,△B1C1D1与矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式,并写出t的取值范围;
(3)如图③,在△B1C1D1移动过程中,直线D1C1与线段AB交于点N,直线B1C1与线段BD交于点M.是否存在某一时刻t,使△MNC为等腰三角形,若存在,求出时间t;若不存在,请说明理由.

同类型试题

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2


y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

