学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.15
所属科目:高中数学
已知集合,且M中的元素个数n大于等于5.若集合M中存在四个不同的元素abcd,使得,则称集合M是“关联的”,并称集合是集合M的“关联子集”;若集合M不存在“关联子集”,则称集合M是“独立的”.
(1)分别判断集合是“关联的”还是“独立的”?
(2)写出(1)中“关联的”集合的所有的“关联子集”;
(3)已知集合是“关联的”,且任取集合,总存在M的“关联子集”A,使得.若,求证:是等差数列.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交