学进去-教育应平等而普惠
试题
类型:问答题
难度系数:0.40
所属科目:高中数学
(1)已知直线l过点,它的一个方向向量为
①求直线l的方程;
②一组直线都与直线l平行,它们到直线l的距离依次为d),且直线恰好经过原点,试用n表示d的关系式,并求出直线的方程(用ni表示);
(2)在坐标平面上,是否存在一个含有无穷多条直线的直线簇,使它同时满足以下三个条件:①点;②,其中是直线的斜率,分别为直线x轴和y轴上的截距;③.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交