学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.40
所属科目:高中数学
如图,过抛物线y2=2PX(P>0)的焦点F的直线与抛物线相交于M、N两点,自M、N向准线L作垂线,垂足分别为M1、N1

(Ⅰ)求证:FM1⊥FN1:
(Ⅱ)记△FMM1、△FM1N1、△FN N1的面积分别为,试判断S22=4S1S3是否成立,并证明你的结论。
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交