(1)真核细胞叶绿体中,在Rubisco的催化下,CO2被固定形成
(2)海水中的无机碳主要以CO2和HCO3-两种形式存在,水体中CO2浓度低、扩散速度慢,有些藻类具有图1所示的无机碳浓缩过程,图中HCO3-浓度最高的场所是

(3)某些植物还有另一种CO2浓缩机制,部分过程见图2。在叶肉细胞中,磷酸烯醇式丙酮酸羧化酶(PEPC)可将HCO3-转化为有机物,该有机物经过一系列的变化,最终进入相邻的维管束鞘细胞释放CO2,提高了Rubisco附近的CO2浓度。

①由这种CO2浓缩机制可以推测,PEPC与无机碳的亲和力
②图2所示的物质中,可由光合作用光反应提供的是
③若要通过实验验证某植物在上述CO2浓缩机制中碳的转变过程及相应场所,可以使用
(4)通过转基因技术或蛋白质工程技术,可能进一步提高植物光合作用的效率,以下研究思路合理的有
A.改造植物的HCO3-转运蛋白基因,增强HCO3-的运输能力 |
B.改造植物的PEPC基因,抑制OAA的合成 |
C.改造植物的Rubisco基因,增强CO2固定能力 |
D.将CO2浓缩机制相关基因转入不具备此机制的植物 |

同类型试题

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2


y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

