(1)为确定58S突变株雄性不育性状是否可以遗传,应在
(2)为研究突变株58S水稻雄性不育的遗传规律,分别用不同品系的野生型(野生型58和野生型105)进行如下杂交实验,实验结果见表1。
表1突变体58S与野生型58和野生型105杂交实验结果
组别 | 亲代 | F1 | F2 | |
实验一 | 58S(♂)×野生型58(♀) | 全部可育 | 683可育 | 227雄性不育 |
实验二 | 58S(♀)×野生型58(♂) | 全部可育 | 670可育 | 223雄性不育 |
实验三 | 58S(♂)×野生型105(♀) | 全部可育 | 690可育 | 45雄性不育 |
实验四 | 58S(♀)×野生型105(♂) | 全部可育 | 698可育 | 46雄性不育 |
通过实验
(3)科研人员在研究过程中发现一株新的雄性不育单基因隐性突变体105S,为研究105S突变基因与58S突变基因的关系,将突变体105S和58S进行杂交,若子一代
(4)研究发现,水稻的可育性主要由(M,m)和(R,r)两对等位基因决定,基因型不同其可育程度也不相同,相关结果如表2所示。
表2 不同基因型个体的可育性程度
基因型 | MMRR | MMrr | MmRr | Mmrr | mmRR | mmrr |
可育性% | 97% | 84% | 61% | 20% | 5% | 1% |
从上表可以推测基因与可育性的关系是:

同类型试题

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2


y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

