学进去-教育应平等而普惠
试题
类型:填空题
难度系数:0.40
所属科目:初中数学
问题提出
(1)如图①,在中,,过点,垂足为,则的面积是       

   

问题探究
(2)如图②,在中,的面积为为边上任意一点,分别与点关于对称,求出五边形周长的最小值;

   

问题解决
(3)某公园内有一块梯形空地,如图③所示,现计划在该空地中种植花草,已知,点分别在边上,点的距离为米,米,.根据设计要求,需要在区域内种植平方米的花卉,其余区域内种植草坪,为提高花卉区域的观赏范围,需将的面积设计得尽可能大.试问的面积是否存在最大值?若存在,求此时种植花卉的总费用;若不存在,请说明理由.(参考数据:

   

编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交