学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.65
所属科目:初中数学
【教材再现】北师大版九年级上册数学教材第122页第21题:“怎样把一块三角形的木板加工成一个面积最大的正方形桌面?”某小组同学对此展开了思考.

(1)若木板的形状是如图(甲)所示的直角三角形,,根据“相似三角形对应的高的比等于相似比”可以求得此时正方形的边长是________.
【问题解决】:若木板是面积仍然为的锐角三角形,按照如图(乙)所示的方式加工,记所得的正方形的面积为,如何求的最大值呢?某学习小组做了如下思考:
边上的高,则,由得:,从而可以求得,若要内接正方形面积最大,即就是求的最大值,因为为定值,因此只需要分母最小即可.
(2)小组同学借鉴研究函数的经验,令.探索函数的图象和性质:
①下表列出了的几组对应值,其中________.
1234
44
②在如图(丙)所示的平面直角坐标系中画出该函数的大致图象;
③结合表格观察函数图象,以下说法正确的是________
A.当时,的增大而增大.
B.该函数的图象可能与坐标轴相交.
C.该函数图象关于直线对称.
D.当该函数取最小值时,所对应的自变量的取值范围在之间.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交