学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.40
所属科目:初中数学
如图,在平面直角坐标系中,抛物线x轴交于两点,与y轴交于点

(1)求抛物线的函数表达式;
(2)点是抛物线上位于直线上方一动点,且在抛物线的对称轴右侧,过点轴的平行线交直线于点,过点轴的平行线与抛物线的对称轴交于点,求的最大值及此时点的坐标;
(3)在(2)中取得最大值的条件下,将该抛物线沿轴向右平移个单位长度,平移后的抛物线与平移前的抛物线交于点,点为平移前抛物线对称轴上一点.在平面直角坐标系中确定一点,使以点为顶点的四边形是菱形,写出所有符合条件的点的坐标,并写出求解点的坐标的其中一种情况的过程.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交