学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.40
所属科目:初中数学
阅读下列材料:在苏教版九年级数学上册页中,我们通过探索知道:关于的一元二次方程,如果时,这个方程的实数根就可以表示为,其中就叫做一元二次方程根的判别式,我们用表示,即,通过观察公式,我们可以发现,如果的值是一个完全平方数时,一元二次方程的根不一定都为整数,但是如果一元二次方程的根都为整数,的值一定是一个完全平方数.
例:方程的值是一个完全平方数,但是该方程的根为,不都为整数;方程的两根,都为整数,此时的值是一个完全平方数.我们定义:两根都为整数的一元二次方程称为“全整根方程”,代数式的值为该“全整根方程”的“最值码”,用表示,即;若另一关于的一元二次方程也为“全整根方程”,其“最值码”记为,当满足时,则称一元二次方程是一元二次方程的“全整根伴侣方程”.
(1)关于的一元二次方程是一个“全整根方程”
时,该全整根方程的“最值码”是__________.
若该全整根方程的“最值码”是,则的值为__________.
(2)关于的一元二次方程整数,且)是“全整根方程”,请求出该方程的“最值码”.
(3)若关于的一元二次方程均为正整数)的“全整根伴侣方程”,求的值(直接写出答案).
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交