运用二次函数来研究植物幼苗叶片的生长状况 | ||
素 材 | 在大自然里,有很多数学的奥秘.一片美丽的心形叶片、一棵生长的幼苗都可以看作把一条抛物线的一部分沿直线折叠而形成. | |
问题解决 | ||
任 务 1 | 确定心形叶片的形状 | 如图3建立平面直角坐标系,心形叶片下部轮廓线可以看作是二次函数![]() |
任 务 2 | 研究心形叶片的尺寸 | 如图3,心形叶片的对称轴直线![]() ![]() ![]() ![]() ![]() ![]() ![]() |
任 务 3 | 探究幼苗叶片的生长 | 小李同学在观察幼苗生长的过程中,发现幼苗叶片下方轮廓线都可以看作是二次函数![]() ![]() ![]() ![]() ![]() |

同类型试题

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2


y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

