学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.40
所属科目:初中数学
在平面直角坐标系中,直线ymx-2mx轴,y轴分别交于AB两点,顶点为D的抛物线y=-x2+2mx-m2+2与y轴交于点C

(1)如图,当m=2时,点P是抛物线CD段上的一个动点.
①求ABCD四点的坐标;
②当△PAB面积最大时,求点P的坐标;
(2)在y轴上有一点M(0,m),当点C在线段MB上时,
①求m的取值范围;
②求线段BC长度的最大值.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交