学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.65
所属科目:初中数学
阅读材料,解答问题:
材料1
为了解方程,如果我们把看作一个整体,然后设,则原方程可化为,经过运算,原方程的解为.我们把以上这种解决问题的方法通常叫做换元法.
材料2
已知实数mn满足,且,显然mn是方程的两个不相等的实数根,由韦达定理可知
根据上述材料,解决以下问题:
(1)直接应用:
方程的解为_______________________;
(2)间接应用:
已知实数ab满足:,求的值;
(3)拓展应用:
已知实数xy满足:,求的值.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交