学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.15
所属科目:初中数学
在△ABC中,90°<∠BAC<120°,将线段AB绕点A逆时针旋转120°得到线段AD,连接CD

(1)如图1,若AB=8,∠ABC=45°,BACD,延长BACD交于点K,求四边形ABCD的面积;
(2)如图2,点ECA延长线上一点,点GAE的中点,连接BEBG,点F在线段AC上,点H在线段BG上,连接HF,若BGGFHFBEGAGH,2∠ACB=∠EBG+∠ABC,求证:BC+CDAC
(3)如图3,在(1)的条件下,点P是线段BC上的一个动点,连接DP,将线段DP绕点D逆时针旋转45°得到线段DP',连接AP',BP',点M是△ABP'内任意一点,点P在运动过程中,AM+BM+P'M是否存在最小值;若存在,请直接写出:AM+BM+P'M的最小值;若不存在,请说明理由.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交