学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.15
所属科目:初中数学
问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板的一个顶点放在正方形中心O处,并绕点O逆时针旋转,探究直角三角板与正方形重叠部分的面积变化情况(已知正方形边长为2).

(1)操作发现:如图1,若将三角板的顶点P放在点O处,在旋转过程中,当重合时,重叠部分的面积为__________;当垂直时,重叠部分的面积为__________;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S的关系为__________
(2)类比探究:若将三角板的顶点F放在点O处,在旋转过程中,分别与正方形的边相交于点MN
①如图2,当时,试判断重叠部分的形状,并说明理由;
②如图3,当时,求重叠部分四边形的面积(结果保留根号);
(3)拓展应用:若将任意一个锐角的顶点放在正方形中心O处,该锐角记为(设),将绕点O逆时针旋转,在旋转过程中,的两边与正方形的边所围成的图形的面积为,请直接写出的最小值与最大值(分别用含的式子表示),
(参考数据:
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交