学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.15
所属科目:初中数学
直线ABCD相交于点O,∠AOC=α,点F在直线AB上且在点O的右侧,点E在直线CD上(点E与点O不重合),连接EF,直线EMFN交于点G
(1)如图1,若点E在射线OC上,α=60°,EMFN分别平分∠CEF和∠AFE,求∠EGF的度数;
(2)如图2,点E在射线OC上,∠MEFmCEF,∠NFE=(1﹣2m)∠AFE,若∠EGF的度数与∠AFE的度数无关,求m的值及∠EGF的度数(用含有α的代数式表示);
(3)如图3,若将(2)中的“点E在射线OC上”改为“点E在射线OD上”,其他条件不变,直接写出∠EGF的度数(用含有a的代数式表示)
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交