学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.65
所属科目:初中数学
(1)如图①,OAB的中点,直线l1l2分别经过点OB,且l1l2,以点O为圆心,OA长为半径画弧交直线l2于点C,连接AC.求证:直线l1垂直平分AC
(2)如图②,平面内直线l1l2l3l4,且相邻两直线间距离相等,点PQ分别在直线l1l4上,连接PQ.用圆规和无刻度的直尺在直线l4上求作一点D,使线段PD最短.(两种工具分别只限使用一次,并保留作图痕迹)
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交