学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.15
所属科目:初中数学
问题发现:
(1)如图1,内接于半径为4的,若,则_______;

问题探究:
(2)如图2,四边形内接于半径为6的,若,求四边形的面积最大值;
解决问题
(3)如图3,一块空地由三条直路(线段、AB、)和一条弧形道路围成,点道路上的一个地铁站口,已知千米,千米,的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点处,另外三个入口分别在点处,其中点上,并在公园中修四条慢跑道,即图中的线段,是否存在一种规划方案,使得四条慢跑道总长度(即四边形的周长)最大?若存在,求其最大值;若不存在,说明理由.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交