学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.15
所属科目:初中数学
在平面直角坐标系上,已知点 A(8,4),ABy轴于 BACx轴于 C,直线 yxABD   
(1)如图 1,若 E OD 延长线上一动点,当BCE 的面积,SBCE=20 时,过点 E EFABF,点 GH 分别为 ACCB 上动点,求 FG+GH 的最小值及点 G 的坐标.
(2)如图 2,直线 BC 与 DE 交于点 M,作直线 MN∥y 轴,在(1)的条件下,将DEF 沿 DE方向平移 个单位得到D′E′F′,在直线 MN 上是否存在点 P 使得BF′P 为等腰三角形,若存在请直接写出满足条件的点 P 的坐标;若不存在,请说明理由.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交