学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.15
所属科目:初中数学
已知正方形与正方形(点CEFG按顺时针排列),MAF的中点,连接DMEM,.

(1)如图1,点在边CD上,点GBC的延长线上,       
求证:=ME⊥.ME
简析: 由是的中点,ADEF,不妨延长EMAD于点N,从而构造出一对全等的三角形,即                      .由全等三角形性质,易证△DNE          三角形,进而得出结论.
(2)如图2, 在的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.
(3)当AB=5,CE=3时,正方形的顶点CEFG按顺时针排列.若点在直线CD上,则DM=          ;若点E在直线BC上,则DM=          .
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交