学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.40
所属科目:初中数学
阅读以下材料:
x+3y+5z=5,x+4y+7z=7,求x+y+z的值.
解:x+y+z=3(x+3y+5z)﹣2(x+4y+7z)=3×5﹣2×7=1.
答:x+y+z的值的为1.
根据以上材料提供的方法解决如下问题:
若2x+5y+4z=6,3x+y﹣7z=﹣4,求x+yz的值.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交