学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.40
所属科目:初中数学
如图,已知二次函数的图象过点O(0,0),A(4,0),B(2,﹣),M是OA的中点.
(1)求此二次函数的解析式;
(2)设P是抛物线上的一点,过P作x轴的平行线与抛物线交于另一点Q,要使四边形PQAM是菱形,求P点的坐标;
(3)将抛物线在x轴下方的部分沿x轴向上翻折,得曲线OB′A(B′为B关于x轴的对称点),在原抛物线x轴的上方部分取一点C,连接CM,CM与翻折后的曲线OB′A交于点D.若△CDA的面积是△MDA面积的2倍,这样的点C是否存在?若存在求出C点的坐标,若不存在,请说明理由.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交