全一卷
1.下列各数中,是负数的是( )
A.-1 | B.0 | C.0.2 | D.![]() |
2.如图所示,该几何体的俯视图是( )


A.![]() | B.![]() | C.![]() | D.![]() |
3.下列运算正确的是( )
A.x2·x3 = x6 | B.![]() | C.x3+x3=2x6 | D.(-2x)3=![]() |
4.实数a,b在数轴上的位置如图所示,下列结论中正确的是( )


A.a>b | B.|a|>|b| | C.﹣a<b | D.a+b>0 |
5.下列关于x的方程有两个不相等实数根的是( )
A.![]() | B.![]() |
C.![]() | D.![]() |
6.不等式组
的解集是( )

A.![]() | B.![]() | C.![]() | D.![]() |
7.在四张背面完全相同的卡片上分别印有正方形、正五边形、正六边形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是中心对称图形的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
8.二次函数
的图像如图所示,则一次函数
和反比例函数
在同一平面直角坐标系中的图像可能是( )





A.![]() | B.![]() | C.![]() | D.![]() |
9.如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线,交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为( )


A.![]() | B.5 | C.![]() | D.10 |
10.如图,若AB∥CD,∠A=110°,则∠1=_____ °.


11.分解因式
______ .

12.表中记录了某种苹果树苗在一定条件下移植成活的情况:

由此估计这种苹果树苗移植成活的概率约为_____.(精确到0.1)

由此估计这种苹果树苗移植成活的概率约为_____.(精确到0.1)
13.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于
长为半径作弧,两弧交于点P.若点C的坐标为(
),则a的值为________ .




14.如图,圆的半径是2,扇形BAC的圆心角为60°,若将扇形BAC剪下,围成一个圆锥,则此圆锥的底面圆的半径为_____.

15.如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上的动点,则2AD+DC的最小值为_____ .


16.计算:
.

17.先化简,再求值:
,其中
.


18.如图,四边形ABCD是平行四边形,
//
,且分别交对角线AC于点E,F,连接BE,DF.

(1)求证:AE=CF;
(2)若BE=DE,求证:四边形EBFD为菱形.



(1)求证:AE=CF;
(2)若BE=DE,求证:四边形EBFD为菱形.
19.为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩(x)分为四个等级:优秀
;良好
;及格
;不及格
,并绘制成以下两幅统计图.


根据以上信息,解答下列问题:
(1)在抽取的学生中不及格人数所占的百分比是______;
(2)计算所抽取学生测试成绩的平均分;
(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数.






根据以上信息,解答下列问题:
(1)在抽取的学生中不及格人数所占的百分比是______;
(2)计算所抽取学生测试成绩的平均分;
(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数.
20.如图,为测量建筑物CD的高度,在点A测得建筑物顶部D点的仰角是
,再向建筑物CD前进30米到达B点,测得建筑物顶部D点的仰角为
(A,B,C在同一直线上),求建筑物CD的高度.(结果保留整数.参考数据:
)





21.某超市销售A,B两款保温杯,已知B款保温杯的销售单价比A款保温杯多10元,用480元购买B款保温杯的数量与用360元购买A款保温杯的数量相同.
(1)A,B两款保温杯的销售单价各是多少元?
(2)由于需求量大,A,B两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且A款保温杯的数量不少于B保温杯的2倍,A保温杯的售价不变,B款保温杯的销售单价降低10%,两款保温杯的进价每个均为20元,应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元?
(1)A,B两款保温杯的销售单价各是多少元?
(2)由于需求量大,A,B两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且A款保温杯的数量不少于B保温杯的2倍,A保温杯的售价不变,B款保温杯的销售单价降低10%,两款保温杯的进价每个均为20元,应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元?
22.如图,在⨀
中,AB为⨀
的直径,C为⨀
上一点,P是
的中点,过点P作AC的垂线,交AC的延长线于点D.

(1)求证:DP是⨀
的切线;
(2)若AC=5,
,求AP的长.





(1)求证:DP是⨀

(2)若AC=5,

23.如图,在平面直角坐标系中,点O为坐标原点,抛物线
的顶点是A(1,3),将OA绕点O顺时针旋转
后得到OB,点B恰好在抛物线上,OB与抛物线的对称轴交于点C.

(1)求抛物线的解析式;
(2)P是线段AC上一动点,且不与点A,C重合,过点P作平行于x轴的直线,与
的边分别交于M,N两点,将
以直线MN为对称轴翻折,得到
.
设点P的纵坐标为m.
①当
在
内部时,求m的取值范围;
②是否存在点P,使
,若存在,求出满足m的值;若不存在,请说明理由.



(1)求抛物线的解析式;
(2)P是线段AC上一动点,且不与点A,C重合,过点P作平行于x轴的直线,与



设点P的纵坐标为m.
①当


②是否存在点P,使
