全一卷
1.计算-1+1的结果是( )
A.1 | B.0 | C.-1 | D.-2 |
2.如图是一个由3个相同的正方体组成的立体图形,则它的主视图为()


A.![]() | B.![]() | C.![]() | D.![]() |
3.在下列四个汽车标志图案中,是中心对称图形的是( )
A.![]() | B.![]() | C.![]() | D.![]() |
4.如图,点D、E、F分别为∠ABC三边的中点,若△DEF的周长为10,则△ABC的周长为【 】


A.5 | B.10 | C.20 | D.40 |
5.计算(-2a)3的结果是( )
A.6a3 | B.-6a3 | C.8a3 | D.-8a3 |
6.如图,点A、B、C是⊙O上三点,∠AOC=130°,则∠ABC等于( )


A.50° | B.60° | C.65° | D.70° |
7.点(﹣1,y1),(2,y2),(3,y3)均在函数
的图象上,则y1 , y2 , y3的大小关系是( )

A.y3<y2<y1 | B.y2<y3<y1 | C.y1<y2<y3 | D.y1<y3<y2 |
8.为了解某公司员工的年工资情况,小王随机调查了10位员工,某年工资(单位:万元)如下:3,3,3,4,5,5,6,6,8,20.下列统计量中,能合理反映该公司员工年工资水平的是( )
A.方差 | B.众数 | C.中位数 | D.平均数 |
9.小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了
,设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是【 】

A.![]() | B.![]() | C.![]() | D.![]() |
10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为【 】


A.1 | B.![]() | C.2 | D.![]() |
11.因式分解:m2-1=_____
12.不透明的袋子里装有3个红球5个白球,它们除颜色外其它都相同,从中随机摸出一个球,则摸到红球的概率是____ .
13.计算
的结果是_______ .

14.如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A′处,连接A′C,则∠BA′C=________ 度.


15.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为_______ 厘米.


16.请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:
1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣
,(﹣3)⊕5=5⊕(﹣3)=﹣
,…
你规定的新运算a⊕b= (用a,b的一个代数式表示).
1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣


你规定的新运算a⊕b= (用a,b的一个代数式表示).
17.计算:

18.解不等式组
,并把解集在数轴上表示出来.


19.如图,正比例函数y=kx(x≥0)与反比例函数
的图象交于点
A(2,3),
(1)求k,m的值;
(2)写出正比例函数值大于反比例函数值时自变量x的取值范围.

A(2,3),
(1)求k,m的值;
(2)写出正比例函数值大于反比例函数值时自变量x的取值范围.

20.如图,为测量江两岸码头B、D之间的距离,从山坡上高度为50米的A处测得码头B的俯角∠EAB为15°,码头D的俯角∠EAD为45°,点C在线段BD的延长线上,AC⊥BC,垂足为C,求码头B、D的距离(结果保留整数).

21.某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用适量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:

(1)此次调查抽取了多少用户的用水量数据?
(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;
(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?

(1)此次调查抽取了多少用户的用水量数据?
(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;
(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?
22.已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE
(1)求证:△ABD≌△CBE;
(2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BDCE的形状,并证明你的结论.
(1)求证:△ABD≌△CBE;
(2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BDCE的形状,并证明你的结论.

23.某汽车在刹车后行驶的距离s(单位:米)与时间t(单位:秒)之间的关系得部分数据如下表:
(1)根据这些数据在给出的坐标系中画出相应的点;
(2)选择适当的函数表示s与t之间的关系,求出相应的函数解析式;
(3)①刹车后汽车行驶了多长距离才停止?
②当t分别为t1,t2(t1<t2)时,对应s的值分别为s1,s2,请比较
与
的大小,并解释比较结果的实际意义.
时间t(秒) | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 1.2 | … |
行驶距离s(米) | 0 | 2.8 | 5.2 | 7.2 | 8.8 | 10 | 10.8 | … |
(1)根据这些数据在给出的坐标系中画出相应的点;
(2)选择适当的函数表示s与t之间的关系,求出相应的函数解析式;
(3)①刹车后汽车行驶了多长距离才停止?
②当t分别为t1,t2(t1<t2)时,对应s的值分别为s1,s2,请比较



24.定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段与线段的距离.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四点.
(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是_____,
当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为______



(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.
(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M.
①求出点M随线段BC运动所围成的封闭图形的周长;
②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值,使以A、M、H为顶点的三角形与△AOD相似,若存在,求出m的值;若不存在,请说明理由.

已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四点.
(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是_____,
当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为______



(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.
(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M.
①求出点M随线段BC运动所围成的封闭图形的周长;
②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值,使以A、M、H为顶点的三角形与△AOD相似,若存在,求出m的值;若不存在,请说明理由.

